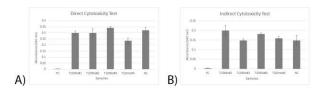
EVALUATION IN VITRO CYTOTOXICITY OF DIFFERENT OXYGEN DOPING ON THE TI-20MO ALLOY

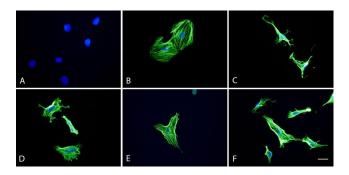
Anne Capra^{1,2}, Renata A. Nogueira^{1,2}, Raul O. Araújo^{1,2}, Carlos R. Grandini^{1,2}, Tatiani A.G. Donato^{1,2*}

¹ UNESP – Univ Estadual Paulista, Laboratório de Anelasticidade e Biomateriais, Bauru, Brazil ² IBTN – Institute of Biomaterials, Tribocorrosion and Nanomedicine – Brazilian Branch, Bauru, Brazil

1. Introduction


The ideal biomaterial should induce predicable, controlled, guided and rapid healing of host tissues. Titanium (Ti) is the consensual biomaterial employed in implants for allowing a well osseointegration [1]. Recently, promising alloys that added niobium (Nb), tantalum (Ta), zirconium (Zr) and molybdenum (Mo) to Ti are being investigated [2-3]. These alloys are a new class of Ti -based alloys, which avoid Al and V, while exhibiting low values of Young's modulus, quite attractive as a biomaterial [4].

2. Experimental


To investigate the biocompatibility as well as the differentiation of osteoblastic cells cultived on a Ti-20Mo alloy after annealing heat treatment comparing with Ti-20Mo alloy doped with different oxygen, *in vitro* cell viability, immunofluorescense and alkaline phosphatase were used. For this, MC3T3-E1 line cells were cultured on Ti-20Mo alloys with base medium [α MEM supplemented with 10% FBS and 1% gentamicina]. These cells were exposed on Ti-20Mo alloys for 48 hours to assay MTT and indirect immunofluorescence. The alkaline phosphatase assay was analyzed with 7 days.

3. Results and Discussions

The present results demonstrated that all studied alloys presented no cytotoxic effects on the osteogenic cells. In addition, a high activity of alkaline phosphatase was observed. All of them, independently from the treatment, showed a central and flattened cell body and numerous and long processes.

Fig. 1: *MTT in MC3T3-E1 cells cultured for 48 hours* on *Ti-20Mo alloy after different treatments. A) Direct cytotoxicity test B) Indirect cytotoxicity test. PC: Positive Contro – 1% phenol; #1: Annealing heat; #2: 1* $x \ 10^{-2}$ Torr; #3: 1 $x \ 10^{-1}$ Torr; #4: 1 $x \ 10^{0}$ Torr; NC: *Negative Control – polystyrene.*

Fig. 2: Immunostaining for actin (green) in MC3T3-E1 cells cultured for 48 hours on Ti-20Mo alloy after different treatments. A: Reaction Control; B: Control – Glass; C: Annealing heat; D: 1×10^{-2} Torr; E: 1×10^{-1} Torr; F: 1×10^{0} Torr. Their nuclei were labeled with DAPI (blue). Bar = 20 μm

4. References

[1]-E. Eisenbarth; D. Velten, M. Müller, R.Thull, J.Breme. Biomaterials., 25, 5705 (2004).

- [2]- P. A. Kuroda, et al. Materials Science and Engeneering C, 67, 511 (2016).
- [3]- D. R. Correa, et al. Materials Science and Engeneering C, 34, 534 (2014)
- [4]- M. Geetha, A. K. Singh, R. Asokamani, A. K. Gogia, Prog. Mater. Sci. 54, 397 (2009).

Acknowledgments

CNPq and FAPESP 2015/25562-7