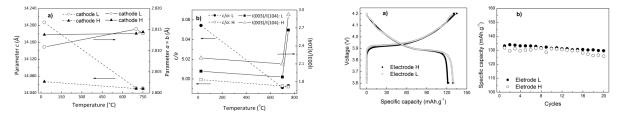
RE-SYNTHESIS OF LiCoO₂ EXTRACTED FROM DISCARDED BATTERIES WITH LOW AND HIGH STATE OF HEALTH

J. Scarminio*, Lucas E. Sita, Stephany P. da Silva, Paulo R. Catarini da Silva Universidade Estadual de Londrina, Depto. de Física, 86.057-970, Londrina, PR, Prazil

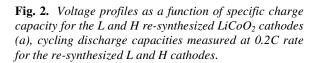
1. Introduction

To avoid ambient contamination and for sustainability reasons, discarded lithium-ion batteries (LIBs) should be recycled. Although several recycling processes are already known, no consider the effect of the battery state of health (SOH) on them. $LiCoO_2$ compounds extracted from cathodes of discarded LIBs with low (L) and high (H) SOH were re-synthesized and its structural and electrochemical properties are discussed.

2. Experimental


The batteries' SOH were measured from charge-discharge cycles performed in the 4.2-3.6 V. Crystalline phases and the lattice parameters of the LiCoO₂ were identified from Rietveld x-ray refinements. The as-extracted LiCoO₂ compounds were thermally decomposed at 700 °C in O₂ atmosphere, whose products were submitted to a solid-state reaction with Li₂CoO₃ at 750 °C in O₂ atmosphere. Galvanostatic charge-discharge cycles in a re-synthesized LiCoO₂/Li cell furnished its charge capacity and voltage profile.

3. Results and Discussions


The compounds extracted from the L and H batteries were identified respectively as $Li_{0.73}CoO_2$ and $Li_{0.96}CoO_2$, that after thermal decomposition resulted in the Li_1CoO_2 and Co_3O_4 compounds, as reaction products. Co_3O_4 concentrations equal to 33.5% and 11.8% in wt were measured for L and H decomposed cathodes, respectively [1]. The solid-state re-synthesis reaction transformed Co_3O_4 into the stoichiometric Li_1CoO_2 compound.

The LiCoO₂ lattice parameters as a function of processing temperatures are shown in Figure 1. The *c* parameter, higher for Li_{0.73}CoO₂ than for Li_{0.96}CoO₂ as-extracted compounds, and the inverse behavior for the *a* parameter is an effect of electrostatic repulsion between the O-Co-O layers, upon Li removal [2]. A Li₁CoO₂ single phase with *c*=14.0496(5) Å and *a*=*b*=2.81412(5) Å was identified after the LiCoO₂ re-synthesized. The c/a = 4.99 and the x-ray peak intensity ratio I(003)/I(104) > 2.6 indicates a well ordered Li₁CoO₂ layered structure, with few or none cationic exchange.

The voltage profiles as a function of the specific discharge capacity is shown in Figure 2a shows for the re-synthesized Li_1CoO_2 electrodes. Higher specific charge capacities were measured for the electrode re-synthesized from the L cathode, Figure 2b. Specific charge capacities of 130.0 and 125.0 mAh g⁻¹ were measured in the twentieth cycle for the re-synthesized L and H cathodes, respectively. We argue that the small size of the re-synthesized particles from the L cathode (as observed from SEM images) can explain the best performance of the corresponding Li₁CoO₂/Li cell, due the higher specific surface area of this electrode.

Fig. 1. Lattice parameters for the as-extracted (25 °C), thermal decomposed (700 °C) and re-synthesized (750 °C) LiCoO₂ compound from the L and H cathodes (a), the corresponding c/a and x-ray intensity $I_{(003)}/I_{(104)}$ ratios (b).

4. References

[1]- R. Floriano, A. O. dos Santos, A. Urbano, L. P. Cardoso, J. Scarminio, IJRRAS, 17, 158-166, (2013).
[2]- S. Laubach at al., Phys. Chem. Chem. Phys., 11, 3278–3289, (2009).

Acknowledgments

L. E. Sita, J. Scarminio and S. P. da Silva are grateful to the CNPq and the Capes for their scholarships.